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Abstract. This work extends our previous studies of two-photon annihilation into baryon-antibaryon pairs
from spin-1/2 octet to spin-3/2 decuplet baryons. Our approach is based on perturbative QCD and treats
baryons as quark-diquark systems. Using the same model parameters as in our previous work, supplemented
by QCD sum-rule results for decuplet baryon wave functions, we are able to give absolute predictions for
decuplet baryon cross sections without introducing new parameters. We find that the ∆++ cross section
is of the same order of magnitude as the proton cross section, well within experimental bounds.

1 Introduction

The study of exclusive processes in quantum chromody-
namics (QCD), where intact hadrons are explicitly mea-
sured in the final state, provides important insights into
the mechanisms of confinement and into the dynamics
of hadronic bound states [1, 2]. Among the multitude of
exclusive processes, two-photon annihilation into baryon-
antibaryon pairs is particularly interesting, because it is one
of the simplest calculable large-angle hadronic scattering
reactions involving two hadrons. Therefore, γγ → BB̄ has
recently received considerable experimental [3] and theo-
retical [4–6] attention.

In a recent paper [5], we have studied baryon pair pro-
duction in two-photon collisions for baryons belonging to
the lowest-lying flavor octet. In the present note we extend
our work to reactions involving spin-3/2 decuplet baryons.
Previously, two-photon annihilation into decuplet baryons
has been studied in [6–10] within different frameworks with
differing conclusions. Thus an experimental analysis could
shed light on the relative importance of the underlying
mechanisms considered here and in the aforementioned ref-
erences.

Our model is a modification of the perturbative hard-
scattering picture (HSP) for exclusive processes [11, 12].
While the HSP is exactly valid only at asymptotically
large momentum transfer, the interplay of perturbatively
calculable with nonperturbative effects renders theoretical
analyses quite intricate at energies where data are cur-
rently available. In order to parameterize such possible
non-perturbative effects within a perturbative framework,
an effective formalism was developed in [13], where baryons
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are treated as quark-diquark systems. In the sequel this
model has been successfully applied to a variety of exclu-
sive reactions [5, 8, 14–17].

In the following, we start with a brief review of the
quark-diquark model. Then we go on to describe the new
ingredients necessary for the study of processes involving
decuplet baryons. In Sect. 3 we present and discuss model
predictions with emphasis on the ∆ cross sections, for which
experimental upper bounds are available [18]. Following
concluding remarks, supplementary analytical expressions
for the scatteringamplitudesare tabulated in theAppendix.

2 Exclusive reactions
in the quark-diquark picture

Herewe briefly summarize themodified hard-scattering for-
malism with diquarks, and elaborate on the aspects specific
to the treatment of decuplet baryons. For a full account of
all details we refer to our recent work [5, 17].

2.1 Review of the model

As in the conventional hard-scattering picture [11,12], an
exclusive reaction amplitude M is convolutively factorized
into a process-dependent, perturbative hard-scattering am-
plitude T̂ and process-independent, non-perturbative dis-
tribution amplitudes Ψ . The latter are probability ampli-
tudes for finding the pertinent valence Fock states, here
quarks and diquarks, in the scattering hadrons. The ampli-
tude for two-photon annihilation into a baryon-antibaryon
pair is given by

M{λ}
(
ŝ, t̂

)
=

1∫
0

dx1

1∫
0

dy1Ψ
†
B (x1) Ψ †

B
(y1) T̂{λ}

(
x1, y1; ŝ, t̂

)
,

(1)
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where Lorentz and color indices are suppressed for conve-
nience. Furthermore, the dependence on renormalization
and factorization scales is neglected since we are only inter-
ested in a rather restricted range of momentum transfer.
The subscript {λ } denotes all possible configurations of
photon and baryon helicities. In the following we use the
label B to denote spin-1/2 octet baryons and B10 to label
spin-3/2 decuplet baryons.

For the process γγ → B10B10, there are 19 independent
helicity amplitudes, MλB10

, λB10
; λ1, λ2 , where the λB10 ,

λB10
are the helicities of the outgoing baryon and an-

tibaryon, respectively, and λ1, λ2 label the helicities of
the two photons. Only 13 out of these 19 helicity ampli-
tudes involve a zero or single flip of the hadronic helicity.
Double flip amplitudes vanish in our approach. We use the
following convention for the nonvanishing amplitudes:

φ1 = M− 1
2 , 1

2 ; 1, −1 , φ7 = M− 1
2 , 3

2 ; 1, −1 ,

φ2 = M− 1
2 , − 1

2 ; 1, 1 , φ8 = M 1
2 , − 3

2 ; 1, 1 ,

φ3 = M 1
2 , − 1

2 ; 1, 1 , φ9 = M 1
2 , − 3

2 ; 1, −1 ,

φ4 = M 1
2 , 1

2 ; 1, −1 , φ10 = M− 1
2 , 3

2 ; 1, 1 ,

φ5 = M 1
2 , − 1

2 ; 1, −1 , φ11 = M− 3
2 , 3

2 ; 1,− 1 ,

φ6 = M 1
2 , 1

2 ; 1, 1 , φ12 = M 3
2 , − 3

2 ; 1, 1 ,

φ13 = M 3
2 , − 3

2 ; 1, −1.

(2)

Other helicity configurations are related to these via parity
and/or time reversal invariance. Our normalization of the
amplitudes is such that the differential cross section for
two-photon annihilation into decuplet baryons is given by

dσ

dt
=

1
64πs2

∑
{λ}

∣∣M{λ}
∣∣2 , (3)

where the sumis over all possiblehelicity configurations{λ}.
In (1), T̂ consists of all possible tree diagrams that con-

tribute to the elementary scattering process γγ → qDq̄D̄.
The momenta carried by quarks q and diquarks D are as-
sumed to be collinear to those of their parent hadrons, B.
The quark and antiquark carry momentum fractions x1
and y1 in the baryon and antibaryon, respectively, while
the diquark and antidiquark carry momentum fractions
x2 = 1−x1 and y2 = 1−y1, respectively. Since we assume
that every baryonic constituent has a four-momentum x pB
proportional to the four-momentum of its parent hadron
pB [19], it acquires an effective mass xmB, where mB de-
notes the baryonmass. These effectivemasses are taken into
account for all internal and external legs of the Feynman
diagrams contributing to the hard-scattering amplitude T̂ .
The hard-scattering amplitude is then expanded in powers
of the small parameter (mB/

√
s) up to next-to-leading or-

der, at fixed center-of-mass scattering angle θ̂. The result
is reexpressed in terms of massless Mandelstam variables,
ŝ, t̂, and û which are obtained from the usual massive Man-
delstam variables, s, t, u, again by expansion in (mB/

√
ŝ).

In the hard scattering diagrams, the composite nature of
the diquarks is taken into account by diquark form fac-
tors. These are parameterized such that asymptotically
the scaling behavior of the pure quark HSP emerges.

The complete parameterization of the model, includ-
ing form factors and octet-baryon wave functions, can be
found in [5]. These parameters were fixed in [14] by fitting
elastic electron-nucleon scattering data. With the same set
of parameters a variety of other processes has been com-
puted, and the results have successfully met experimental
comparison [5, 14,16,17].

2.2 Decuplet baryons

The diquark model comprises spin-0 (scalar) and spin-
1 (vector) diquarks. While both scalar (S) and vector
(V) diquarks contribute to processes involving spin-1/2
octet baryons, the valence Fock states of spin-3/2 decuplet
baryons consist only of quarks and vector diquarks.

We recall that the valence Fock state of an octet baryon
B with mass mB, momentum pB, and helicity λ can be
described by the following quark-diquark wave function

ΨB(pB, x, λ) = fB
S ΦB

S (x)χB
S u(pB, λ) + fB

V ΦB
V (x)χB

V

1√
3

×
(

γµ +
pµ
B

mB

)
γ5 u(pB, λ) (4)

when transverse momenta of the constituents are neglected.
x is the longitudinal momentum fraction of the quark,
whereas the diquark carries the longitudinal momentum
fraction 1−x. Analogously, the wave function of a decuplet
baryon may be written as

Ψµ
B10

(pB10 , x, λ) = fB10
V ΦB10

V (x)χB10
V uµ (pB10 , λ) , (5)

with the Rarita-Schwinger spinors [20]

uµ (p, λ = ±3/2) = εµ (±1) u (p, λ = ±1/2) ,

uµ (p, λ = ±1/2) =

[√
3
2

εµ(0) − 2λ√
6

(
γµ +

pµ

mB10

)
γ5

]

× u(p, λ) . (6)

Recall that all Lorentz indices have been suppressed in
(1), the open index µ of the vector diquark polarization
vector in (4) and (5) is contracted appropriately in the
convolution integral (1). χB

D, χB10
D (D = S, V ) denote per-

tinent SU(3) quark-diquark flavor wave functions and ΦB
D,

ΦB10
D represent the nonperturbative probability amplitudes

for finding these constituents with momentum fractions x
and 1 − x, respectively, in the (decuplet) baryon. These
probability amplitudes are normalized such that

1∫
0

dxΦB
D(x) = 1 , (7)
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and analogously for ΦB10
D . The constants fB

D, fB10
D result

from integrating out intrinsic transverse momenta in the
full wave function to produce (4) and (5), respectively. The
numerical values offB

D andfB10
D are furthermoredetermined

by the overall probability of finding the |qD〉-state in the
baryon B or decuplet baryon B10, respectively.

For unbroken SU(6) spin-flavor symmetry octet- and
decuplet baryon wave functions are related, specifically,
ΦB

S = ΦB
V = ΦB10

V and fB
S = fB

V = fB10
V /

√
2. In the actual

parameterization of the diquark model [14] the asymptotic
SU(6) symmetry is systematically broken down to SU(3)
flavor symmetry. Thus the above SU(6) relations are by
no means satisfied, and ΦB

S and ΦB
V as well as fB

S and
fB

V have quite different values. Since SU(6) symmetry is
thus already broken within the baryon octet we cannot use
SU(6) symmetry for deriving quark-diquark wave functions
of decuplet baryons. Instead, we will apply another strategy
to fix ΦB10

V and fB10
V .

The lowest moments of three-quark wave functions of
octet and decuplet baryons are restricted by QCD sum
rules [9, 21]. Model wave functions that satisfy the QCD
sum-rule constraints (for a typical factorization scale of
about 1 GeV) are very asymmetric in the longitudinal mo-
mentum fractions xi, i = 1, 2, 3 of the quarks for octet
baryons and nearly symmetric (∼ x1x2x3) for the ∆s and
the Ω [9]. By regrouping terms in the three-quark wave
function such that, for example, quarks 2 and 3 are in a
specific spin-flavor state and by integrating over one of the
momentum fractions of the two quarks that build up this
“diquark” we can convert the three-quark wave function
into a quark-diquark wave function that nearly has the
form (4) or (5) for octet or decuplet baryons, respectively.
For more information on this conversion we refer to [8].
The probability amplitudes ΦB

V and ΦB10
V for general three-

quark wave functions are different in the cases of helicity-0
and helicity-1 V diquarks. For the octet and decuplet model
wave functions that we employ this difference turns out to
negligible. We then arrive at (4) or (5), respectively.

We apply the above procedure to the three-quark wave
function of the ∆ that has been proposed in [9] based on
QCD sum-rule constraints. We obtain the following quark-
diquark wave function for a ∆ with helicity ±1/2

Φ
∆,|λ|=1/2
V (x) = Nx (1 − x)3

(
1 − 2.95x + 3.86x2)

× exp

{
−b2

[
m2

q

x
+

m2
V

1 − x

]}
. (8)

Analogous to the standard parameterization of the diquark
model for octet baryons [14], we have introduced an addi-
tional exponential factor that damps the end-point regions
x → 0, 1. Such an exponential factor results if the trans-
verse momentum dependence of the full wave function,
which is integrated over, is assumed to be of Gaussian
form. The parameters b2 = 0.248 GeV2, mq = 0.33 GeV,
and mV = 0.58 GeV are taken to be the same as for octet
baryons. The normalization factor N is determined by (7).
The expression for Φ

∆,|λ|=3/2
V (x) differs, in general, from

Φ
∆,|λ|=1/2
V (x). However, we refrain from quoting it here,

because our explicit calculations show that the production
of helicity-3/2 ∆s is suppressed within the diquark model.

The only remaining open parameter is now the nor-
malization f

∆,|λ|=1/2
V of the helicity-1/2 ∆ wave function.

Since the normalization fB
V of the octet-baryon wave func-

tion was taken as a free parameter in the diquark model
we normalize the ∆ wave function relative to the pro-
ton wave function. This means that we convert the three-
quark wave functions for proton and ∆ into quark-diquark
wave functions of the form (4) and (5), respectively, and
consider the resulting ratio f

∆,|λ|=1/2
V /fp

V . For the QCD
sum-rule based wave functions of [9] and [21] this ratio be-
comes f

∆,|λ|=1/2
V /fp

V = 0.898. With fp
V = 127.7 MeV, the

value obtained in a fit of elastic electron-nucleon scattering
data [14], we thus find

f
∆, |λ|=1/2
V = 125.1 MeV . (9)

This completes the parameterization of our model for
decuplet baryons. For the sake of completeness, we quote
the flavor wave functions entering (5) for the differently
charged ∆s:

χ∆++

V = uV{uu} ,

χ∆+

V =
[√

2uV{ud} + dV{uu}
]
/
√

3 ,

χ∆0

V =
[√

2dV{ud} + uV{dd}
]
/
√

3 ,

χ∆−
V = dV{dd} . (10)

3 Results

We list analytical results for the hard-scattering amplitudes
T̂{λ} contributing to γγ → B10B̄10 in the Appendix. These
results have been checked via crossing relations [22] against
the separately computed amplitudes for the crossed pro-
cess, Compton scattering γB10 → γB10. Comparing the
spinor structure of the decuplet baryon wave function (5)
with the one for octet baryons (4), we find that the lead-
ing, non-flip, hard amplitudes for decuplet baryons with
helicity 1/2 are related by a factor of two to those for octet
baryons. From the analytical expressions we also observe,
that the hard-scattering amplitudes for decuplet baryons
with helicity ±3/2 are suppressed by O(m2

B10
/ŝ) or higher,

even if these amplitudes conserve the hadronic helicity or
flip it by one unit. The only four-point contribution that
is not suppressed enters the helicity amplitude φ̄2. In the
numerical calculations this contribution, however, turns
out to be nearly negligible. The five-point functions with
both photons attaching to the diquark do not contribute
at all, since these are also suppressed by O(m2

B10
/ŝ) or

even higher.
As a consequence of this observation, cross section ra-

tios of different decuplet baryon channels can easily be
estimated, provided that the corresponding probability am-
plitudes ΦB10

V are not too different. The cross-section ra-
tios are then essentially determined by the corresponding
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Fig. 1. Integrated cross sections for γγ → ∆++∆̄−− (solid
line), ∆+∆̄− (dotted), ∆0∆̄0 (dashed), ∆−∆̄+ (dash-dotted
line) (| cos(θCM)| < 0.6) versus center-of-mass energy W =

√
s

predicted with the standard parameterization of the diquark
model [5] and the ∆ DA defined in the text (see (5), (8), and (9))

charge-flavor factors C
(3)
cf (see (13)) and the wave function

normalizations fB10
V . For the ∆-quartet Φ∆

V and f∆
V are the

same for all members due to isospin symmetry. From the
flavor wave functions (10) the charge-flavor factors C

(3)
cf

are seen to be 4/9, 3/9, 2/9, and 1/9 for the ∆++, ∆+,
∆0, and ∆−, respectively. The cross section ratios become
(approximately)

σ(∆++) : σ(∆+) : σ(∆0) : σ(∆−) = 16 : 9 : 4 : 1 . (11)

This is the first interesting prediction of the diquark model.
In Fig. 1 we show the integrated cross sections (| cos(θCM)|
< 0.6, where θCM is the center-of-mass scattering angle)
for the ∆ channels. The plot exhibits numerical predictions
obtainedwith the standard parameterization of the diquark
model [5] and the ∆ wave function derived in Sect. 2.2. It
confirms (11) within 1 percent.

This prediction is to be contrasted with the ratios 16 :
1 : 0 : 1 that result if the photons couple to the total
charge of the ∆s. Also within the pure quark HSP the
ratios for the ∆+ and the ∆0 channels differ from ours.
Within the pure quark HSP the cross section ratios for
the different ∆ channels are predicted to be σ(∆++) :
σ(∆+) : σ(∆0) : σ(∆−) ≈ 16 : 2 : 1/3 : 1 [9]. Note
that all the above predictions agree with our result for
the cross section ratio σ(∆++) : σ(∆−) ≈ 16 : 1. This
result is also found in a more general QCD analysis [10].
However, yet another possible production mechanism via
multi-pion intermediate states predicts σ(∆++) = σ(∆−)
and σ(∆+) = σ(∆0) [6]. An experimental determination of
such cross section ratios could therefore provide important
clues on the underlying production mechanisms, especially
because in ratios of cross sections for different ∆ channels
the sensitivity to the specific form of the ∆ wave function
should be greatly reduced.

If we assume SU(3)-flavor symmetry, that is, if we take
the same ΦB10

V and fB10
V for all decuplet baryons, we are also

able to give estimates for the pair production of strange
decuplet baryons. Aside from appropriate phase space fac-
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Fig. 2. Integrated cross section for γγ → ∆++∆̄−−

(| cos(θCM)| < 0.6) versus W =
√

s for the same ∆ DA as
in Fig. 2. The solid line corresponds to the full diquark-model
calculation. The contribution to the cross section that comes
from the hadronic-helicity conserving amplitudes φ̄1 and φ̄5 is
represented by the dashed line. For comparison we also show
the integrated cross section for γγ → pp̄ (dotted line) calcu-
lated within the same model [5]. The shaded boxes indicate
experimental upper bounds as obtained by the ARGUS collab-
oration [18]

tors, SU(3) symmetry implies

σ(∆+) = σ(Σ∗+) ,

σ(∆0) = σ(Σ∗0) = σ(Ξ∗0) ,

σ(∆−) = σ(Σ∗−) = σ(Ξ∗−) = σ(Ω∗−) . (12)

However, since it is experimentally very difficult to mea-
sure pair-production cross sections for decuplet baryons,
we refrain from giving quantitative results for the strange
decuplet baryons. We rather concentrate in the following
on the ∆++ channel which might have the best chance to
be measured due to its comparably large cross section.

In Fig. 2 we show for comparison with the γγ →
∆++∆̄−− cross section the γγ → pp̄ cross section that
we have obtained with the same parameterization [5]. Sur-
prisingly, we find that the ∆++ cross section is of the same
order of magnitude as the proton cross section. This predic-
tion seems to be very stable against (reasonable) changes of
the ∆ wave function. With a ∆ wave function that satisfies
the SU(6) relations Φ∆

V = Φp
V and f∆

V =
√

2fp
V we ob-

tain, for example, a result which is only about 20% to 30%
smaller 1. Under the naive assumption that the photons
couple directly to the charges of the baryons one would
expect the ∆++ cross section to be about 16 times larger
than the proton cross section.

From the viewpoint of the pure quark hard-scattering
picture, the ratio of γγ → ∆++∆̄−− to the γγ → pp̄
cross section depends strongly on the choice of the proton
wave function [9]. Not surprisingly, a result for the ratio
comparable to ours is obtained with the QCD sum-rule

1 In a previous attempt to estimate σ(∆++)/σ(p) within a
diquark model a ratio of ≈ 0.1 was found [8]. This, however,
was obtained with an incomplete version of the diquark model,
where V diquarks were not taken fully into account and mass
effects have been neglected.



C.F. Berger, W. Schweiger: Exclusive decuplet-baryon pair production in two-photon collisions 177

wave functions of [9] and [21] for ∆ and proton, respectively,
which we have used in Sect. 2.2 to derive and normalize
our quark-diquark wave function of the ∆. However, if the
asymptotic wave function ∼ x1x2x3 is taken for both the
proton and the ∆, the cross section ratio σ(∆++)/σ(p) can
be as large as 50 within the pure quark HSP [7]. On the other
hand, soliton models involving multi-pion channels predict
a much smaller ratio [2, 6], comparable to our findings.
An experimental determination of the ratio σ(∆++)/σ(p)
could therefore help to explore the importance of the various
mechanisms that result in these quite different predictions.

Unfortunately, it is very difficult experimentally to iso-
late the signal of the broad ∆++ resonance from the back-
ground and to disentangle the ∆++ and the ∆0 contri-
butions in the γγ → pp̄π+π− cross sections which are
actually measured. Therefore only upper limits for the
γγ → ∆++∆̄−− cross section have been extracted up to
now by the ARGUS collaboration [18]. As can be seen in
Fig. 2, our results lie well below these upper limits. More
recent attempts to constrain the γγ → ∆++∆̄−− cross
section using the data taken by the L3 group are afflicted
with the same problems, but a preliminary assessment in-
dicates compatibility with the ARGUS results and our
predictions [23]. A better chance to determine the cross
section for ∆++∆̄−− pair production would perhaps ex-
ist for the BABAR or BELLE experiments which enjoy a
much higher luminosity.

Finally, let us comment on the treatment of mass effects
within our approach. Figure 2 displays the effect of taking
into account the finite ∆ mass. As explained in Sect. 2.1,
the ∆ mass is taken into account in the hard-scattering am-
plitudes via an expansion in the small parameter (mB/

√
ŝ)

where only the leading and next-to leading order terms
are kept. As expected, mass correction terms do not con-
tribute to the hadronic helicity-conserving amplitudes φ1
and φ5. Only the amplitudes that involve a single flip of
the hadronic helicity, which vanish if masses are neglected,
become nonzero due to the mass correction terms. The com-
parison of the solid and the dashed lines in Fig. 2 shows that
these mass effects can be sizable in the few-GeV region. At
W = 2.5 GeV the leading-order contributions provide only
about 30% of the full cross section. This ratio increases, of
course, with increasing energy and becomes roughly 70%
at W = 5 GeV.

4 Concluding remarks

In this work we have computed γγ → B10B̄10 cross sec-
tions at intermediate momentum transfer for the case of
spin-3/2 decuplet baryons B10. We have employed a mod-
ification of the hard-scattering picture for exclusive re-
actions, where baryons are treated as quark-diquark sys-
tems, thereby effectively parameterizing nonperturbative
contributions which are undoubtedly present at currently
experimentally accessible energies. Using the same model
parameters as in previous studies of other photon-induced
reactions, and constraining the quark-diquark wave func-
tion of the ∆ with the help of QCD sum-rule results, we

are able to give absolute predictions for γγ → ∆∆̄ without
introducing new parameters.

We find that the cross section for γγ → ∆++∆̄−−
is of the same order of magnitude as the cross section for
proton pair production, γγ → pp̄. Furthermore, we observe
that the pair production of decuplet baryons is almost
completely determined within our model by those graphs
where bothphotons couple to the quark line.This enables us
to estimate production ratios for different decuplet-baryon
channels independent of the choice of the wave function,
provided that the wave functions are similar for all baryons
within the decuplet. This is certainly the case for the ∆-
quartet for which we predict the ratios σ(∆++) : σ(∆+) :
σ(∆0) : σ(∆−) = 16 : 9 : 4 : 1.

There are various other estimates of these cross section
ratios in the literature, based on different viewpoints and
production mechanisms, which differ in their predictions
from ours. It would, therefore, be necessary to compare
to experimental analyses, in order to determine the rela-
tive importance of the considered production mechanisms,
and to learn more about the degree of symmetry among
constituents in decuplet-baryon distribution amplitudes.
Such an experimental analysis should be quite feasible at a
high-luminosity e+e− collider. We, therefore, hope that our
experimental colleagues will study this interesting problem
in the near future.

A Elementary helicity amplitudes
for γγ → qV q̄V̄

There are 30 Feynman graphs that contribute to the hard-
scattering amplitudes T̂ for γγ → qV q̄V̄ . Their general
structure is

T̂{λ}(t̂, û) = C
(3)
cf T

(3,V )
i (t̂, û)F (3)

V + C
(4)
cf T

(4,D)
i (t̂, û)F (4)

V

+ C
(5)
cf T

(5,V )
i (t̂, û)F (5)

V , (13)

where C
(n)
cf are the appropriate charge-flavor factors. The

subscript i = 1, . . . , 13 labels the helicity-combinations ac-
cording to (2). Each n-point contribution T

(n,V )
is found

froma separately gauge-invariant set of Feynmandiagrams,
where (n − 2) gauge bosons couple to the diquark. The
T

(n,V )
are multiplied with the appropriate diquark form

factors F
(n)
V , parameterizing the composite nature of di-

quarks. For further details we refer to [5].
The analytical results for T

(n,V )
i are presented in the

following. For their calculation, we employed the alge-
braic computer programMathematica [24]with the package
FeynCalc [25]. We do not list n-point contributions that
are suppressed by at least O(m2

B10
/ŝ), since they are ne-

glected in our numerical calculations. Those include, for
example, all five-point functions T

(5,V )
i and all amplitudes

with (anti)baryon helicity ± 3
2 . Note that the parameter-

ization of the form factors F
(n)
V for four- and five-point

functions provides additional inverse powers of ŝ as com-
pared to F

(3)
V . We abbreviate C = (4π)2CF α αs, where
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CF = 4
3 is the color factor, and α denotes the fine struc-

ture constant α ≈ 1/137. κV is the anomalous magnetic
moment of the vector diquark.

T
(3,V )
1 (t̂, û) = − 4

3
C

κV

m2
B10

√
ût̂

(
û

x1y1
+

t̂

x2y2

)
,

T
(3,V )
2 (t̂, û) =

2
3

C
1

mB10

√
ŝ ŝ

ût̂

x1 + y1

x1y1
,

T
(3,V )
4 (t̂, û) = C

2
3 mB10

1√
ŝ ût̂

1
x1x2y1y2

× {−κV
[
(2x1 − 3)y2t̂

2 + (2y1 − 3)x2û
2 − 4x1y1ût̂

]
+

[
(x2 + y2)

(
t̂2x1y2 + û2x2y1 − 2x1y2ût̂

)
− y2t̂

2 − x2û
2]},

T
(3,V )
5 (t̂, û) = T

(3,V )
1 (û, t̂),

T
(3,V )
6 (t̂, û) = −C

2
3

1
mB10

√
ŝ ŝ

ût̂

×
[
−(1 + κV)

x1y
2
2 + y1x

2
2

x1x2y1y2
+ κV

x1 + y1

x2y2

]
,

T
(4,V )
2 (t̂, û) = − 2

3
C

κV(1 − κV)
√

ŝ

m3
B10

1
x1x2

2y1y2
2

.

The hard-scattering amplitudes for Compton scatter-
ing off decuplet baryons are related to the amplitudes listed
above via crossing [22]. The corresponding elementary he-
licity amplitudes, γqD → γqD have been computed sepa-
rately as a check. They can be obtained from the authors
upon request.
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